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ABSTRACT. - This paper provides a game theoritic rationale
for the use of standards of behavior in hierarchies. It proves that
the common knowledge of such standards in a long term relation-
ship generates tacit cooperation as long as the time horizon is far
enough and that intermediary observations are feasible. Though
mathematically similar to the well known reputation effect it is
argued that the observed result is more robust with respect to
the players incentive to view their relationship through such a
formalization.

Coopération implicite dans une hiérarchie avec
des standards de comportement

RESUME. - On montre I'utilité de standards de comportement
au sein des hiérarchies, a I'aide d'un modéle de théorie des jeux.
Lorsque de tels standards sont communément connus par les par-
ties engagées dans une relation de long terme, une coopération
tacite se met en place, ceci, en dépit de I'impossibilité d’'un engage-
ment contractuel sur le comportement futur du principal ou de
I'agent.
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1 Introduction

In many situations in which a hierarchical relationship occurs for the
achievement of some project it is good practice for the supervisor to define
intermediary steps. These intermediary steps provide an opportunity to
check that everything goes as expected, cash payments are indeed made,
well defined parts of the projects are achieved, and so on. In some sense
one could say that a reference path has been agreed upon. Further-
more, the tacit agreement is that, if intermediary steps are fine, then
the project will go on as expected but no definite commitment is made
a priori.

Indeed the use of standards of behavior plays a key role to facilitate
coordination within companies in which hierarchical relationship is the
rule. The literature on administrative management gives many illustrations
of such practices in terms of standard costs, output objectives, ROL, ... To
an outsider it is always a surprise that these references are most of the time
self-enforced in spite of the uncertainties and of the moral hazard
opportunities which there may be. The traditional interpretation is one of
bounded rationality and satisficing behavior (CYerT and MARcH [1963]).

This paper provides another interpretation for the use of standards of
behavior. It shows that in a game theoritic context, reference and time
stabilize behavior and eliminate opportunistic deviations. Under some
minimal rationality conditions, an agent will accept to support extra costs
to maintain the path on the reference because of the tacit agreement to go
on. Once properly understood, this game theoretic rationale can be used
in a normative fashion that significantly enlarges the usual applications of
standards in management.

Indeed the specific context which suggested this paper develops one such
application. Consider a capital investment project. The usual approach
is to analyze it as a global package, including possible contingencies, and
accept it if its discounted expected cash-flow is positive. The “reference
method” relies on the implementation of a control procedure in which the
value which is supposed to be created by the project is periodically reassessed
(for a detailed presentation see KERVERN and PonssARD [1990] as well as
PonssaRD and Tancuy [1991] for discussion of a case study which
triggered the development of this method). But, as opposed to traditional
updating, the idea is to maintain the initial agreed upon value as a commit-
ment as long as possible. The existence of this commitment greatly facilita-
tes coordination and adjustments within the firm, say between the head-
quarters and the operational divisions. Furthermore it focalizes the atten-
tion on the elaboration of a stable reference that is, on a set of assumptions
which should be immune to contingencies that can and should be taken
care of as part of operational management. As a pratical tool this
approach reminds of “target ROI” or “target price” approaches (see for
instance KAPLAN and ATkiNsoN [1989], for a discussion of these tools). Yet
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this approach has several distinct features such as shared understanding of
the basic underlying physical flows of the project, the existence of crucial
coordination dates between parallel decision processes, etc... so that the
global target is actually decomposed into more elementary ones the coher-
ence of which has to be maintained. The construction of such a reference
is quite a heavy organizational task. The actual course of action will
inevitably generate many deviations from this reference, most of them are
natural and do not endanger the overall economy of the project while others
may eventually lead to its complete reformulation. The existence of a
common reference facilitates this decentralized inference process so as to
maintain coordination along the project life cycle. It should be noted
that this coordination procedure operates under a control by exception
mechanism, the setting of a set of possibly incompatible constraints being
more important than the identification and the maximization of an objective
function.

The corresponding situation will be modelled as a game between a
supervisor and an agent which expertise relative to the project may a priori
be high or low. Of course, once the project has started, the agent will
know his own expertise and if it is low he may decide to compensate it by
a larger effort. It will be supposed that the project can be decomposed
into smaller ones and that for each small project a standard is observable
by both parties. When this standard is observed it is assumed that the
overall project is going on schedule from the point of view of the
supervisor. Yet the achievement of the standard may be costly in the short
run for the agent.

In such a situation it will be proved that a policy in which the supervisor
agrees to let the project go on as long as the intermediary steps are met
and accordingly the agent eventually incurs intermediary costs generate an
equilibrium path as long as the time horizon is far enough. As the time
horizon becomes shorter the probability of a collapse of the tacit coordina-
tion increases and a complete reformulation of the project becomes more
and more likely.

From a theoretical angle the underlying model may be considered as a
straighforward application of the theory of games with incomplete informa-
tion and in particular of the well known reputation effect (see Kreps and
WiLsoN [1982], MiLGrom and ROBERTS [1982]). But the interpretation of
the model is somewhat different. Most game theorists consider that the
players actually face the game as it is described either by its game tree or
by its normal form. Here these representations are only a joint model of
a “real situation and it is agreed upon that in many ways this model is an
unrealistic representation of reality. Then it becomes crucial to explain
why the players would agree that this simplication is useful and what usage
it serves. The idea of the paper is that model building should be considered
as a joint learning exercice the role of which is to elicit standards of behavior
for actual action. In the context of this paper one will have to discuss
why it may be meaningful for the players to decompose a large project into
smaller ones, under what conditions is tacit agreement to go on enough to
bring up tacit coordination, whether or not the uncertainty on the expertise
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of the agent can be detrimental to the relationship... In fact, it will be
argued that the role of standards is far more robust with respect to these
questions than the reputation effect is.

This paper is organized as follows. Section 2 defines the model.
Typically the underlying situation is characterized as an investment project
that on the average should be beneficial to both parties. Yet if the
agent is not the perfect expert he may sometimes be unlucky so that to
meet the required standards he would have to carry on an effort which
could only be worthwile if the project goes on. Since both parties know
this, it means that the project can be initiated only if the time horizon is
long enough. In fact it will be proved that this is the only sequential
equilibrium of that game. The corresponding results are detailed and
proved in section 3. It should be noted that this game of incomplete
information deals with two long players that is, both players stay in
the game for its whole duration. This feature explains why the
computations are somewhat more complicated than in most similar
games in which the uninformed player is a different one at each stage
(in particular the folk-theorem results derived by FUDENBERG and LEVINE
[1989] do not apply here). Section 4 provides a discussion of the similarities
and differences between this approach and the reputation effect.

2 The Model

Consider the extensive game depicted figure 1

¢ (1,1)

c (1,1) next
stage

c (1, 1-k)

FiGUre 1

The Basic Reference Model.
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This game is to be interpreted as follows:

(1) Player 1 and Player 2 may jointly operate an on going project for N
stages.

(ii) Player 1 provides the money and Player 2 provides the expertise.

(iii) There is a probability p that Player 2 be the perfect expert for the
project in which case he is indeed Player 2 R (R for reference Player), but
there is a probability 1—p that he only be an imperfect expert.

(iv) If he is an imperfect expert, at each stage he may either be lucky
(with probability 1/2), in which case everything goes as if he were the perfect
expert, or he may be unlucky (with probability 1/2), in which case he may
decide to stop the project (s) rather than to continue (¢), the selection of s
is an opportunistic move but it is revealing whereas the selection of ¢ is
costly and not revealing.

(v) The stage payoffs are such that: the project is worthwhile if everything
goes fine (1, 1), an unlucky imperfect expert would rather stop (k>0), if
Player 1 were sure to face an imperfect expert he would not initiate the
project (K >2).

(vi) Observe that this game involves two types of chance moves. The
first chance move on H and L occurs only at the beginning of the game
whereas the second one occurs as many times as the number of stages to
be played (without loss of generality one could change the probability
distribution on the second chance move and adjust the payoffs accordingly).

To get further insight about this game consider the special case p=0, no
repetition and take the expectation over the second chance move (see
figure 2).

1 2 1,1-k/2)

(0,0) (1-XK/2,1)

FIGURE 2

The Game for p=0

It is now apparent that if K>2 and 0<k<?2 then the unique Nash
equilibrium of this game is (S, s) whereas the payoffs associated with C, o)
strictly dominate (0, 0). If the Players could commit themselves to <, o
then this would be preferable to a non cooperative play. This is the well-
known centipede game of Rosenthal.
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Let us come back to the original situation. The fact that they cannot
commit themselves may come from the non observability of the move ¢
and from the fact that to write a contingent contract may be too
complicated. Then the players are left with the possibility of defining a
“proxy” as a standard of behavior. In this case it may mean to achieve
an outcome of 1 for player 1. It is now common knowledge that not to
satisfy this standard will interrupt the game because in that case it is also
common knowledge that the outcome of 1 will not be achieved in the last
period, and in fact in no future periods at all. In a sense, the model of
the game is part of the accepted standard.

3 The Results

Denote by I' (k, p, N) the game described in section 2 in which K, k and
p are parameters (K>2, 0<k<2, 0<p<1) and N stands for the length of
the game that is, the maximal potential number of repetitions for the
sequences of move (C, ¢).

A strategy for Player 1 can be associated with the sequence of probabili-
ties A,(0<X,<1) of playing C whenever there are at most »n remaining
stages (1 <n<N). Similarly, a strategy for Player 2 can be associated with
a sequence of probabilities p, (0<p, < 1) of playing c.

Observe that by strict dominance it must be that Player 2’s equilibrium
strategy satisfies u, =0. At the last stage, Player 2 never continues. As
for Player 1, straightforward calculation shows that if p>p; he should
select C(A,=1) and if p<p, he should select S(h;=0). The point of
indifference p, is such that

0=p,+ (1-p) (1/2+ (1-K)/2)
or
pr=(K-2)K

with belongs to [0, 1] since K >2.

The idea is to prove that when this game 1s repeated then it only has one
sequential equilibrium. Let us first describe the nature of this equilibrium
qualitatively.

If p is close to 1, say between p,; and 1, then it certainly pays for Player 1
to cooperate at the last stage. In a two stage game and if p is between p,
and 1, it may be worthwile for Player 2 to cooperate. This comes from
the fact that Player 2 knows that Player 1 will cooperate at the last
stage. Thus it is possible for Player 2 to calculate the return of an invest-
ment that is, to accept the eventual extra cost of the current period in order
to achieve an outcome of 1 for Player 1, given the benefits of going on one
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more period. Suppose this is positive. Now, can it be that Player 2 pays
this extra cost for sure for p close but smaller to p1? The answer is clearly
no since otherwise the revised probability would not change, it would
remain less than p, and Player I would not cooperate at the last
period. Now could it be that Player 2 never pays this extra cost? Again
the answer is no since otherwise, for p close enough to p,, the revised
probability would make a jump above P and Player 1 would now cooperate
for sure, and this would induce Player 2 to pay the extra-cost for sure. This
logical contradiction can only be solved through the introduction of rando-
mized strategies. The consequence of this randomization is that for a two
stage game Player 1 is prepared to cooperate as long as p is between p,
and 1 with p,<p,. And so on.

The corresponding steps of this Bayesian idea are now detailed.

Lemma 1 (Existence of a strictly dominating for Player 2):
In the game I'(K, k, p, N) it is a strictly dominating strategy for
Player 2 to always stop (u,=0 for all n, 1<n<N) as long as

k>2(1- (12N Y

Proof: If Player 2 stops, the game ends immediately and his payoff
is 1. Suppose he is given an opportunity to play then to continue will first
generate a stage payoff worth 1 —k. The most that he can expect from
the remaining N—1 stages is 1+1/2+ 1/4...+1/2%72_ given that he is sure
to stop at the remaining stages. Comparing the two payoffs gives the
desired result. O

Denote by N, the smallest integer for which (k <2 (1— (1/2)No~ 1) Recall
that 0 <k <2 so that N, exists).

Lemma 2 (Last stages):

For N <N, the only equilibria are the following.

For Player 1 if p>p, then A, =1 for all n, if p<p, then X, =0 for
all n.

For Player 2, p,=0 for all n.

Except for p=p,, the equilibrium is unique.

Proof: Since Player 2 has a strictly dominating strategy it is enough to
compute Player I’s best response. If Player 1 decides to continue, his
conditional payoffs at each stage are independent of the stage. They are 1
and 1—-K/2 for p=1 and p=0 respectively. The expectation over p is zero
for p= (K —2)/K, his best response stragegy follows. O

LemMma 3 (Initialization of the reference effect):
If N=N, and p>p, then py=1.

Proof: Lemma 2 implies that whatever Player 2’s initial move, Player 1
will continue for sure for the remaining N—1 stages. This is so because
whatever Player 2’s initial move, the conditional probability given the obser-
vation of ¢ is bounded from below by p (only Player 2 has the option to
play s, Player 2 R does not have this option). Then, and this is the key
of the argument, strict dominance now implies that Player 2 selects ¢ as an
initial move in the game I' (K, £, p, Ny). O

From now on it is supposed that N> N,.
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Let us give a sketch of the proof of the main theorem that will be made
formally in the next pages.

As the proof is by induction, we shall suppose that on can build a
sequential equilibrium for the N —1 last stages. At the N—1 stage, if p is
superior to py_;, then player 1 continues (i.e. plays C). Let us define py
such that the posterior probability on H is py_, given a prior of py and
the assumption that Player 2 plays p=0 (he stops).

One must notice, given a prior p and denoting p.(u) the conditional
probability if ¢ is observed given p, that the lower p is the higher p,(p)
becomes after observing Player 2 continuing. That is to say that as soon
as p is inferior to py the revised probability p,(n) is always inferior to
Pn—1. One must also notice that, whatever the value of p, p (1) is always
superior or equal to the prior p.

Let us draw some implications of these facts. If the theorem is true for
N—1 then:

— if p<py then Player 1 plays S, (because Player 2 plays s knowing that
Player 1 shall play S at the next stage),

— if p>pn_;. then Player 1 plays C (because Player 2 plays ¢ knowing
that Player 1 shall play C at the next stage),

— for py<p<pn-_,., Player 2 plays a randomized equilibrium.
This defines py= (K—1) py_,/K such that:

— if p>py Player 1 plays C,

— if p<py Player 1 plays S.

In the following, we shall adopt the following notations.
Pn,= (K—2)/K,

for N>Ng, pn= (K~ 1) pn-4/K,

PN=Pn—1/ Q= Pn- 1)

THEOREM 4 (Reference effect):

The sequential equilibrium of the game I' (K, &, p, N) is unique (except
for p=py) and can be fully characterized as follows.

For Player 1:

(i) p<py then &,=0 for all n;
(ii) if for some m=N, p,, <p<p,_, then:
A,=1 for all # such that m<n<N
A, =k/(1+k) for all n such that No<n<m
Ang=k/(2— (1/2)No™1) for n=Nj,
A,=1 for all n such that 1<n<Ny—1;
(i) if py,<p<1, then A, =1 for all n.
For Player 2:

(i) if p<py Player 2 expects Player 1 to select S with probability 1,
in case he observes C, his strategy is degenerated but to select p, such
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that p,(u,)=p,—, for all n>N, and u,=0 for all n such that 1<n<N,
give consistent beliefs;

(ii) if for some m>N, p,,<p<p,_, then:

1,= 1 for all n such that m<n<N,

M, is such that p, (u,)=p,_, for all n such that Ny<n<m,
1, =0 for all n such that 1<n<Ny;

(iii) if py,<p<1, then p,=1 for Ny<n<N and p,=0 for I<n<N,.

The theorem is proved by induction. Observe that it trivially holds for
all n<N, because of Lemma 2 and 3. Suppose it is true for N—1 then
we first characterize the subset of p, 0<p<1 such that a pure sequential
equilibrium may exist, second we characterize the subset of P, 0<p<1 such
that a randomized equilibrium may exist. In each case we prove unique-
ness, the proof of the theorem will follow.

LEMMmA 5 (Pure sequential equilibria):
Consider the game I' (K, &, p, N) and assume the theorem holds for N — 1
then pure equilibria at the first stage exist if and only if P<PNOTPZPN_,-

Proof: If p<py, it has been seen that whatever py Player 1’s beliefs given
the observation of ¢ are such that p, (kn) <pn_;- This means that in
F'(K, k, p, N=1) Player | equilibrium strategy is always to stop:
An—1=0. Consequently Player 2 has no incentive to induce Player 1 to
initiate the game and Player 1 equilibrium strategy can only be
Axy=0. Observe however that this does not imply that Iy can be anything,
in particular it cannot be that py=1 otherwise a contradiction would arise,
Player 1 would initiate the game and then stop. This explains why py has
to be small enough so that p (uy) is smaller or equal to DPn—1, Yet close
enough to py_;.

If p>pn_,, since p,(un)=p, it is known that Player 1 will continue for
sure at the next stage so by continuing Player 2 increases his total expected
payoff by (1—k/2) which is strictly positive. Player 2 should play ¢ so
that Player 1 should play C and this is the only way of playing.

Suppose  now that py<p<py_, then, by  construction
Pe(un=0)>py_;. If py=0, Player 1 should continue at stage N—1 but
then Player 2 should have played py=1. Suppose un=1 then
P.(un=1)=p<py_, and it is now known that Player 1 should definitely
stop at the next stage so that Player 2 best response is now un=0. No
pure strategy equilibria can exist for such values of p. [

As a consequence of lemma 4 it follows that for pjy<p <pn_; One can
only have randomized equilibria with 0 <Ay_, <1 and O<py<I1. Ttis now
a simple matter to show that such a randomized equilibrium is unique
except at the value of p for which Player | will be precisely indifferent
between S and C, and this value is exactly py.

LemMMA 6: (Randomized sequential equilibria):

Consider the game I'(K, &, p, N). Assume the theorem holds for
N—1, then, the randomized equilibrium at the first stage is unique (except
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at p=py) and occurs only when py<p<py_,. Itis such that:

(1) An=1,

(i) p. () =Pn- 1>

(i) Ay—y =k/(k+1), if N>N,.

(V) An_ =k/(2— (1/2)No~ 1), if N=N,,

Moreover for py<p<pn.

(1) An=0,

(it) p. (my)=pn-. is a consistent belief.

Proof: For Player 2 to randomize it must be that he is indifferent between
a payoff of 1 and an expected payoff such that

T=k+ (1= A=) 0 Ay [T Ay, (1. g, (2= (172N 1),

This is so because as long as Player 2 will be randomizing his stage
payoff is one whereas it is (2— (1/2)No~!) for the last stages. This proves
that Ancg[THAN (T A 2= (1/2)N0 )=k and $0
An_;1 (1+k)=k, and finally Ay_,=k/(1+k) except for N=N, for which
An-1=k/ (2= (1/2)%7 Y.

Note that Player 1’s probability of continuing remains exactly the same
as the last stages come closer. Observe however that as soon as only the
last stages are left (if they are), Player 1 will continue for sure whereas
Player 2 will stop for sure if he is unlucky.

Now if Player 1 randomizes at stage N— 1 it must be that Pe(UN)=Pn-1
since this is the only point where Player 1 is indifferent. Given this condi-
tion let us compute Player 1’s expectation at stage N. Observe that his
conditional expectation at stage N— 1 is zero.

If he stops he gets 0.

If he continues he gets
p 1+ (I=p)(A2+1/2(px+ (1—py) (1-K))+0
that is
p+ (1=p)(1-K/2+pyK/2).

But p.(in)=py-, implies py=2p(1—=py_,)/(1=p)py_,— 1 so that the
value of p for which Player 1 is indifferent between stopping and continuing
is precisely such that

pt(A-p(A-K2+p(1-py_)/A=p)px-—K/2)=0
or
= K-=1)py_,/K=py.

Note that for p=py we have through simple calculus py=1-2/K (1—py),
which proves that py increases with N since py decreases with N. On the
contrary, as already noted, Ay is constant. [
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Proof of the theorem 4: Since we used only necessary conditions to
construct sequential equilibria and since the construction leads to a unique
solution (except for p=p,), this gives the desired result. ]

4 Similarities and Differences with
the Reputation Effect

It is first worthwhile to show that the game I' (K, k, p, N) may have non
sequential equilibria.

Consider figure 3 which gives the normal form of the game
I"(5,1/2, 1/2, 2).  Only undominated strategies for Player 2 are kept.
Observe that p, =3/5 and p,=12/25 so that theorem | says that at the first
stage Player 1 should play C, then Player 2 should randomize. At the
second and last stage Player 1 randomizes whereas Player 2 always select s.
The corresponding normal form equilibria is (1/2, 1/2, 0) for Player 1 and
(1/3, 2/3) for Player 2.

¢ $
cc
(3/4,15/8)  (-1/8,7/4)
CS (1,7/8) (-1/4,1)
S
©0,0) 0,0)

FiGure 3

The Multiplicity of Equilibria in the Normal Form.

This normal form game has another equilibrium namely (0, 0, 1) and
(0, 1). The fact that this equilibrium is not sequential can be interpreted
as a time inconsistency in Player 1’s reasoning. Start with statement 1 that
Player 1 plays S because he expects Player 2 to play s whatsoever. This
implies that had he payed C and observed ¢ he would almost be sure to
face a good guy so that he should again play C. This is self contradictory
since it leads Player 2 to deviate and play c.

As a comparison with the reputation effect it has long been observed
that in the Kreps and Wilson entry model there are several sequential
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equilibria and indeed the rationale to eliminate some of them and keep the
good one is at the origin of much work on Nash refinements. This work
reinforces the role of common knowledge not only on the game structure
but also on the solution concept itself and this indirectly Jjustifies our
interpretation. In what way the players share any incentive to structure
their relationship according to some basic rules embedded in a formal model
becomes a major question for the analyst.

In this respect it is interesting to depict the impact of the reference effect
through the graphs of Player 1’s average expected payoff as a function of
p and N (cf. figure 4). Observe that the reference outcome 1 is achieved
almost everywhere as the number of stages goes to infinity. Consequently
the value of information for Player 1 (v,) is always negative. (This notion
is defined as discussed in LEvINE and Ponssarp [1977]). This is evidently
true for Player 2 as well.

N=1 N = Np-1

FIGURE 4

The Graphs of Player 1'’s Average Expected Payoff.

As for the equilibrium path it can be summarized as consisting of three
parts: tacit cooperation for sure in the early stages, then tacit cooperation
only with some probability (constant for Player 1, decreasing for Player 2),
finally defection for sure for Player 2 and continuation as long as possible
for Player 1. In the second part of the equilibrium path the net gains for
continuing the relationship is clearly zero since the players are randomizing,
yet the players exactly manipulate their strategies to generate a positive
outcome in the early stages. In a loose way one could say that they agree
to correlate their strategies over time and this certainly justifies the idea
that the actual path embeds some joint rationality aspects as opposed to a
pure individualistic interpretation of Nash solutions.

This feature of the model is particularly convincing in this case since it is
in both players’ own interest to do so that is, to accept the model as a
reference. The corresponding graphs for the Kreps and Wilson’s model
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show that the players have conflicting interests with respect to the value of
information.

Similarily it can easily be seen that in this model the players have a
similar incentive in reshaping a one shot model into an N shot model in
which the payoffs are equally divided by N, whereas ordinarily this is not
true in the reputation model.

Such differences explain why interpretations such as “entrants reason to
forecast future actions on the basis of past behavior which in turns gives
the established firm reason to prey to build a reputation” (MILGROM and
RoBERTS [1982, p. 303]) would not apply here. One would prefer one such
as “it is much better to incur an intermediate loss as long as compliance to
the agreed upon standard will keep the project going on and generate future
profit streams that overcompensate this loss, given that the project is already
going on and that the others are reasoning in a similar fashion and that
every body knows that”. This latter interpretation is more in line with the
idea of convention as defined by Lewis [1969] whereas in the former one
the idea of reputation could in fact be associated with “bluff’ and that
“bluff”” should sometimes be ““called”, otherwise “La mariée est trop belle”.
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