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Rational Escalation

Gabrielle DEMANGE *

ABSTRACT. - In many conflicts, protagonists commit resources
that will not be returned. These situations, which often lead to
apparently wasteful escalation, are well captured by the following
“all-pay” auction. Two bidders bid repeatedly for a prize until
one drops out. As usual the prize goes to the highest bidder but
both bidders, the winner and the looser, pay their bids. Not only
a process of escalation may be rational but it may be the only
reasonable rational issue. We indeed prove that, if there is some
uncertainty about the strength of the players, the only stable equili-
brium may entail escalation. This result corroborates the idea that
escalation is primarily a struggle to determine which player is the
strongest one.

Rationalité des surencheéres

RESUME. - Dans de nombreux conflits — course aux arme-
ments, investissement en recherche et développement — les prota-
gonistes se trouvent engagés dans un engrenage de dépenses
de plus en plus grandes. De tels comportements, apparemment
irrationnels, sont observés dans I'enchére suivante. Deux joueurs
enchérissent successivement jusqu’a I'abandon de I'un d’entre eux.
Le prix est attribué au plus fort enchérisseur mais aussi bien le
perdant que le gagnant doivent payer leur enchére. Nous montrons
qu'un comportement de surenchére pouvant conduire chaque
joueur a dépenser plus que la valeur du prix est la seule issue
« raisonnable » (dans le sens de Kohlberg-Mertens). Pour cela, il
suffit que les joueurs soient incertains quant & la force de leur
adversaire.

* G. Demance : DELTA EHESS, 48, boulevard Jourdan, 75014 Paris.



1 Introduction

Escalation occurs when two or more agents become locked into a decision
process resulting in spending more resources than what the outcome is worth
whatsoever. Observation of everyday events provides many examples of
such behaviour: International conflicts, arms races, investment processes,
competitions for government contracts,... The emergence of escalation
processes in real-life poses something of a puzzle, since it looks inconsistent
with individual rationality. Some of the critical questions are: Which
situations favor escalation? Can escalation be rational?

Game theory is of course an appropriate tool to get some insight on
these difficult questions. They should be first adressed in models that
capture the essential ingredients necessary for escalation but are simple
enough to be analyzed. The dollar auction is one of them. It can be
played in a classroom, usually to the great advantage of the auctioneer
(SHUBIK [1971]). Players alternately bid for a prize, say ten dollars, given
that all bids are lost and that the prize goes to the highest bidder. Often
two students engage into an escalation process which can be understood as
follows. A bidder always bids up over his opponent’s last bid by less than
ten dollars. So the difference between the current bids is less than ten
dollars. Suppose it is five. The second highest bidder is tempted to bid
up by six, hoping to get the prize. But then, his opponent is tempted to
become again the highest bidder, by bidding up by two, and so on. Such
an escalation process is hard to stop and each player, winner or not, ends
up paying more than ten dollars.

The mechanism at work here is typical of escalation: A sequence of
actions that look locally rational results in a globally irrational
behaviour. If, from the very beginning, the players realized that, escalation
should not occur. The game-theoretic analysis proposed by O’NEILL [1986],
and LEININGER [1988] seems to show this point. In all equilibria in pure
strategies, only one player bids and always wins the prize. Actually, escala-
tion can be justified in this game because there are equilibria with escalation
but in mixed strategies. However it is not clear that escalation should
occur: Equilibria are numerous and no argument allows one to select a
particular equilibrium.

The aim of this paper is to test the idea that escalation is primarily a
struggle to determine which of the participants is the stronger. In the real
world, strength comes from superior skill, or greater resources, and so
on... In our sketchy model, strength is represented by a card, which may
be high or low. More precisely we study a variant of the dollar auction
where each of the two players receives privately a card, high or low, at the
beginning of the auction. If all resources are exhausted, cards are shown
and a player gets the prize only if his card is high and his opponent’s card
is low. The value of the prize is less than their resources so that if cards
are shown, even the winner of the prize looses money.
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We show that not only escalation may be rational in this auction but
even sometimes it may be the only rational issue (in a sense to be precised
later). Quite interesting are the two basic ingredients necessary for this
result. First, the bids a player is allowed to make at each step is smaller
than the value of the prize. It agrees with the intuition that a cycle of
escalating commitment is more likely to occur when, at each step, a player
hopes to cut his losses by a further commitment. Second, players are
uncertain at the beginning of the game about their opponent’s strength. So
that bidding is the only way for players to signal their strength.

To understand how these two ingredients generate escalation, it is import-
ant to see that rational escalation requires some uncertainty. If a player’s
behaviour could be predicted for sure at some point, for example if it was
known that he would never bid more than a given amount, then a backward
argument shows that he should not bid at all. Therefore, when a player
has bid once he is expected to bid again. By induction, when both players
have bid at-least once they have engaged themselves into an irreversible
escalation process in which they exhaust their resources with positive proba-
bility.

This leaves only two possible kinds of equilibria: the winning equilibria,
in which only one of the players bids and always wins the prize, or the
escalation equilibria, in which escalation occurs with some pro-
bability. These equilibria are very different. Winning equilibria are based
on threats: the auction stops at once because the looser does not bid, by
the fear that the winner will overbid. On the contrary, in an escalation
equilibrium, the auction may continue until exhaustion of the resources;
furthermore information about the strength of the participants may be
partially and gradually revealed.

Often both kinds of equilibria exist, and the question is to know which one
is the more sensible. This is where the initial uncertainty about opponent’s
strength plays a role. Bidding allows a player to signal his strength and it
can destabilize the winning equilibria. Indeed the looser is not expected
to bid at all. By bidding he may try to signal that he is strong. To be
convincing his signal should not be ambiguous: The winner, after observ-
ing an unexpected bid, should arrive at the conclusion that the looser is
indeed strong. This would induce him to drop out from the auction and
destabilize the equilibrium. Such an argument is based on the winner’s
belief off the equilibrium path. Since this belief is not given by Bayes’
rule, we need a theory of how it is formed or at least of which beliefs can
be surely discarded as unplausible. Such a theory is provided by the
concepts of forward induction and stability.

The paper is organized as follows. Section 2 illustrates, by means of
examples, some properties of escalation. It is rational only if each
opponent’s behaviour is uncertain. If there is no exogenous uncertainty
as in O’Neill’s model, escalation can be understood only through the use
of mixed strategies. But if there is exogenous uncertainty bids may convey
information and, for that reason, escalation may be the only stable rational
issue. It is shown by using the logic of forward induction as in CHo
and Kreps [1987]. Section 3 sets up the model. Section 4 proves some
properties of rational escalation, in particular the irreversibility of escalation
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once both players have started to bid. Section 5 describes the equilibria
of the auction and studies their stability. In particular it is shown that,
for some values of the initial assessments, an equilibrium with escalation
exists and is the unique stable equilibrium. A direct forward induction
argument is difficult to carry out when the game has many steps. This is
why we use the less intuitive concept of stable equilibrium since, as it is
well known now, it captures some features of forward induction (KOHLBERG
and MERTENS [1986], VAN DamME [1989]). It turns out to be very perfor-
mant here and to select the more plausible issue. Finally we discuss some
related work.

2 Examples

2.1. Example 1: The Dollar Auction

We consider the dollar auction game as modelled by O’Neill. The
auction is as follows: Two players bid alternately for S dollars. Each one
has a budget of B dollars, S<B, and is free to choose the number of dollars
he bids. Bids are lost and a player should bid up by at least one dollar
over the other’s last bid.

It is a game with perfect information and the usual backward procedure
can be performed. It consists of eliminating the strictly dominated moves,
starting from the terminal nodes and going backward through the
tree. However here it does not single out a unique outcome because players
are indifferent at some nodes between several actions. For instance, in the
case of S=3 and B=4 the elimination of the strictly dominated moves
leads to the extensive form depicted in figure 1.

At this point, depending on the way indifferences are broken, two perfect
equilibrium outcomes in pure strategies are obtained. They are represented
respectively by arrows and double arrows. Player I bids by one or two
dollars and player I always drops out.

More generally, for any values of S and B, there are several perfect
equilibria in pure strategies, but in all of them player I wins the prize and
player II never bids. On this basis, O’Neill argues that escalation is not
rational in this game. But his argument holds only if pure strategies are
considered. Escalation cannot occur in an equilibrium in pure strategies:
The winner of the prize is known for sure, and the looser should not bid at
all. However, equilibria with escalation exist in mixed strategies. They
are even numerous. To see this, remark that any randomization is rational
at the final nodes because of the indifference of the players. Appropriate
randomization values then make the player who plays the step before
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indifferent between his choices. And so on, so that indifference propagates
through the game tree.

FiGcure 1
(-1,0)
(-1"3)
('1,1)
2 0
- 1 +3 (1-
@ ©, S

(2,0)

For example consider in figure 1 the situation where player I has bid
1'$. If T drops out with probability 2/3 when II bids 2 §, player II is
indifferent between bidding 2 $ or dropping out. Now, going backward,
I may bid 2 $ with probability less than 1 /3 and dropping out with the
complementary probability, thereby inciting I to initially bid 1 $ and mixed
equilibria are obtained. But IT may also bid 2 $ with probability exactly
equal to 1/3, so as to make player I indifferent between initially bidding
either 1 $ or 2 § and other mixed equilibria are obtained.

Therefore there are lots of perfect equilibria and no refinement theory
proposed so far allows one to select one of them.

2.2. Example 2

Our second example will be generalized in the rest of the paper. It
illustrates the signalling role that bids may play in a game with imperfect
information. This signalling role is used to pick up a particular equili-
brium, namely the equilibrium with escalation. We consider the auction
depicted in figure 2: Two players bid for S dollars, 1 <S<2. They both
have the same budget of 2 dollars. At the beginning of the game player
IT receives privately a card, high (k) or low (/). Then they alternately either
bid by one dollar or drop out. Player I starts and all bids are lost. If a
player drops out, the auction is over and the prize is awarded to the
opponent. Otherwise, both players bid twice, and II’s card is shown.
Player II gets the prize if his card is high. Otherwise the prize is lost.

We shall see that there are three kinds of Nash equilibria in this game:

— the I-winning equilibria where player I bids and player II drops out
wathever his card is;

— the Il-winning equilibria where player I drops out;

RATIONAL ESCALATION 231



FIGURE 2
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— an equilibrium with escalation where both players spend their two
dollars with positive probability (recall that the value of the prize S is
smaller than 2). Contrary to the other equilibria, this one conveys some
information: Player II is more likely to bid with a high card rather than
with a low one. An important parameter of this equilibrium is the value
1—1/S. Suppose that a player expects his opponent to drop out with
probability 1/S and overbid with probability 1 —1/S. Then he expects to
recover immediately exactly his bid. In the sequel we set t=1—1 /S. The
equilibrium exists if the initial probability of II having a high card is small
enough, more precisely if g<n?. It can be described as follows.

First bids:
Player I bids for sure;

Player II overbids for sure if his card is high. If his card is low,
he randomizes: he overbids with the probability B' defined by
q/(g+(1—g)B")=n. Therefore, after observing II's bid, I’s assessment
about II having a high card is updated exactly to =.

Second bids:
Player I bids his second unit with probability n;

Player II overbids for sure if his card is high and drops out for sure if
his card is low.

These strategies are indeed in equilibrium. At his first bid II builds his
“reputation” of having a high card. This requires him to drop out suffi-
ciently often when his card is low. As a consequence, player I expects an
immediate strictly positive gain by entering into the auction because he
expects II to overbid with probability (¢ + (1 —g) B*) = g/n, which by assump-
tion is smaller than . Therefore it is optimal for him to bid first. At his
second bid he expects II to overbid him with probability m, which makes
him indifferent between bidding and dropping out. II’s strategy 1s also
optimal: with a high card he expects a strictly positive payoff by bidding at
both steps; with a low card he expects a null payoff so that he is indifferent
between bidding and dropping out.

We claim that the equilibrium with escalation is the only reasonable
one if g<mn®. For example, we show how to eliminate the I-winning
equilibria. They are supported by threats of overbidding from Player I in
case of an unexpected bid of II: I's probability of overbidding II’s bid
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should be high enough to refrain II from bidding. More precisely, suppose
that I threatens to overbid with probability . Then player II expects by
bidding his first unit:

(1-2)(S—1)—A if his card is low
(because he optimally drops out at last step)
(1—=A)(S—1)+A(S—2) if his card is high

(because he optimally bids at last step).

II is refrained from bidding if his expectations are negative. This requires
that the threat A is at least equal to S—1. And for such threats, II surely
strictly looses with a low card but may be tempted to bid with a high one
(when A is just equal to S—1). Thus, if I ever observes a bid, he should
conclude that II’s card is high and should not overbid at all. Player II
knows that and the equilibria are destabilized.

The argument here is usually called a forward induction argument. If II
ever bids, player I tries to find a rational explanation to this bid, instead of
thinking it is a mistake. He looks forward to seeing who surely looses by
bidding, and he concludes that II's card must be high. Such an introspec-
tion leads to nothing in example 1 because information is complete. It is
the very fact that bids may convey information which allows here to select
one equilibrium by forward induction.

It is interesting to understand why the concepts of perfection, and proper-
ness do not capture this signalling role. In these approaches unexpected
moves are perceived as transmission errors and players’ strategies are requi-
red to be robust against such errors. Therefore if I ever observes a bid
from II, he gives no meaning to that bid: He has no reason to believe
that II is more likely to “tremble” with a high card rather with a low
one. He may even think the contrary, in which case it is rational for him
to overbid.

In section 5, the argument is generalized to the case where uncertainty
bears on both players and where they can bid more than twice. The above
forward induction argument is difficult to carry out when the game has
many steps. Therefore, we use the concept of stable equilibrium. Roughly
speaking, I-winning equilibria are unstable if by slightly perturbing players’
strategies in some direction no equilibrium is close to the I-winning
equilibria. As was pointed out by Van Damme, perturbing the strategies
and not only the actions allows to correlate the moves off the equilibrium
path. This explains why an unexpected bid may be interpreted and
becomes informative.
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3 The Model

3.1. The Rules of the Auction

Two players bid for S dollars; S>1. They both have the same budget
equal to B. At the beginning of the game each player receives privately a
card, high (k) or low (/). Let p(resp. q) the probability of player I (resp. II)
drawing a high card. Then they alternately either bid by one dollar or
drop out. Player I starts to play. All bids are lost. Whenever a player
drops out, the auction is over and the prize is awarded to his
opponent. Otherwise, both players bid B times until exhausting their
budget. In that case, they show their cards and receive payoffs according
to table 1 (bids are excluded).

TaBLE 1

n A /

h €S, eS S,0
/ 0,S 0,0

We shall assume 0 <e€S<1. The strict positivity of € is taken for techni-
cal convenience and does not alter the spirit of the results. The assumption
eS<1 is more important: It captures extremely competitive situations
where there can be at most one winner. Even if a player’s card is high, it
is not clear that he should bid even one dollar. The drawings of the cards
are independent. The information is perfect if cards are known by both
players at the start, namely if each assessment p, ¢ is equal to 0
or 1. Otherwise the information is imperfect. The auction is depicted in
figure 3: Player I starts and acts at steps B!, (B—1)!,..., 1% player II acts
at steps B", B— 1", ... 1"

3.2. Notation and Definitions

A behavioral strategy for a player specifies his probability of bidding,
depending on his card, at any step he may be called to play. We denote
by 0= ()= 1,.. . B,c=n 1, @ Player I's strategy where of represents his proba-
bility of bidding at step &' if his card is ¢. Similarly B=(B;) represents a
IT’s strategy.
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Suppose that players follow the strategies a and B. As the auction
continues, their probability assessments about each other card evolve accord-
ing to Bayes’ rule. We denote by g, the probability assessment by 1 that
Il’s card is high when II’s resources are exactly equal to b; and similarly p,
for II’s assessment about I’s card.

If there is a positive probability to reach any step of the auction, all
these assessments are well defined. For the same reason, the payoff that a
player expects if the auction starts at a given step and players move
according to the strategies is also well defined: Let uj the payoff that I
expects at step b' if his card is ¢ (bids that have already been already made
are excluded). At step &', he expects II to overbid with probability p,
equal to:

Hy=(1—g) Bf;‘*"h BZ

Therefore, if he bids, he expects an immediate net gain equal to
(1—p,)S—1, which can also be written as (m—p,)S where x=1—1/S as in
example 2. (Remark that & is between 0 and 1). Since I expects to reach
step (b— 1)! with probability p, his payoffs satisfy the recursive formula:

{ =0y (T — ) S+p,v5_,) b>1

(D
v9=0,76=(1—¢o—¢o&) S

Similarly, IT’s expectation at step 5" about I's overbidding is equal to:
A1 =(1—py_y)oh_+py_ 05
and II’s expected payoff wj satisfy:

{WZ:BCb((n_xb—l)S_'-)‘b—lw;—l)a b>2

@ 1 _ I . h_Qh
wi=—B,wi=PB1(m—po(1—¢)S

Remark that w§ is II’s expected payoff at step BY. At the beginning of
the game, he expects (1 —ig) S+ A wh.
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Before starting any formal analysis remark that “winning” equilibria
always exist. In such an equilibrium the winner always gets the prize at
once because his opponent never enters into the auction. The winner
threatens his opponent to overbid with a high enough probability if ever
he bids. Since the value of the prize is smaller than the budget, it is
worthless for the opponent to ever bid. However these equilibria do not
always seem reasonable. For example if player II is a priori in a strong
position, i.e. if p is small and ¢ is large, player I should not always
win. This explains why we now study the other equilibria and carry out a
stability analysis. We first start by some properties on rational
escalation. Apart from their onw interest, they will be used to build
equilibria with escalation

4 Some Properties of Rational
Escalation

In this section, we assume that players act rationally in the usual Nash
sense. 'That is, we consider Bayesian Nash equilibria. Roughly speaking,
at each step where a player is called to bid if the strategies are followed, he
uses an action that is optimal against the anticipated future moves given
by the strategies. We prove here two important properties of “rational”
escalation. They imply that escalation necessarily entails some uncertainty
in each opponent’s behaviour. As the proofs show, they are valid in more
general auctions than the one we consider here: It suffices that the bid a
player is allowed to make at each step is strictly smaller than the value of
the prize.

4.1. At the Start of the Escalation Process

PropOSITION 1: In an equilibrium, whenever a player bids, his opponent
expects him to bid again with positive probability if his budget is not
exhausted.

Proof: Suppose that some step b' is reached (b>1) and that player i
bids. If his opponent expects him to drop out for sure at step (b—1), he
anticipates to get the prize at a cost of one unit, whatever his card is. Thus
the rationally bids up. But then, by bidding at step &', player i is sure to
loose his bid against nothing: He should not bid at all. [J

Suppose that a player bids. Proposition 1 does not say that he will bid
at next step with positive probability, but that his opponent expects him to
bid with positive probability. When information is imperfect it makes a
difference: a player may bid with a low card knowing that he will not bid
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again but his opponent does not know it if he does not know his opponent’s
card.

By induction, whenever both players have bid once, a process of escalation
has started. This allows one to classify the equilibria: Either one of the
players never bids or they both exhaust all their budget with positive
probability. The result does not depend on the specific rules used at the
end of the auction. This proves the following corollary.

CoroLLARY 2: There are only three kinds of Nash equilibrium:

— the I-winning equilibria where I bids and II drops out, whatever
their cards are;

— the II-winning equilibria where I never bids, whatever his card is;

— the equilibria with escalation where both players are expected
ex ante to exhaust all their budget with positive probability.

Apart from classifying the equilibria, corollary 2 is very useful to study
those with escalation: Since all steps are reached, the probability that a
player assesses about his opponent’s card, and the payoff he expects if he
bids are defined at all steps.

4.2. Along the Escalation Process

We show here that once the escalation process has started there is not
much freedom in player’s expected behaviour: Each one drops out in such
a way that this opponent’s immediate expected gain is zero when he bids. It
is a usual feature when players randomize and can be understood as
follows. In order that a player continues to bid with some probability
until the end of the auction, it must be that his opponent drops out with
some probability. Therefore bidding once more should not give either
player a positive gain (Formal proofs are given in the appendix).

ProrosiTion 3: In an equilibrium with escalation, no player is expected
to overbid for sure, i.e.:

A, <lforb=B-—1,...,1 and w,<lforb=B, ..., 1.

Consider a player, say I, who bids at step »' knowing that his opponent
surely bids up. He expects an immediate loss of 1. So he must expect to
recover at least his bid from the auction starting at step (b—1)". Thus at
step (b—1)" he expects a strictly positive payoff and he bids for sure. But
now, the same argument works for player II since at step ", he expects
player I to overbid for sure. Repeating the argument, all players are
expected to bid for sure until exhausting their resources. We get the
contradiction: Player II bids his last unit only if his card is
high. Knowing that, player I expects €S—1 at step 1' by bidding. Since
we assumed £S < I, he should not bid at all contradicting A, =1. O

CoroLLARY 4: In an equilibrium with escalation, a player who bids
expects to recover exactly his bid at the next step, if any, except possibly

RATIONAL ESCALATION 237



at the first step:

Ap=H,=T, b=B-1,...,1.
O<pg<m and Ag=1 if pp<m

Consider a player who is still in the auction at step b. If he expects to
recover immediately strictly more than his bid, he rationally bids for
sure. It contradicts proposition 3 except if it is player I at the first step of
the auction. On the contrary, suppose he expects an immediate loss by
bidding. When he bids, he must expect a strictly positive payoff from the
auction starting at step b—1. So he bids for sure at step h—1 which
contradicts again proposition 3. I

Therefore players can expect a positive gain only at the very beginning
or at the end of the auction. These results are again fairly general:
Proposition 3 and the statement of corollary 4 (but not the specific values
for A, and p,) hold whenever it is not optimal for both players to simultane-
ously bid for sure their last unit.

Corollary 4 has an important consequence about the evolution of the
“reputation” of the players: Their reputation of having a high card cannot
increase too much along the auction after the first bids: By Bayes’ rule
Py—1 =04 py/hy, sO that p, _, <p,/A, with an equality if player I bids for sure
with a high card. By a repeating argument assessments always satisfy
the following constraints: p,_; A, Ay, ... Ag<pg=p. Corollary 5 is then
easily obtained from corollary 4:

CoroLLARY 5: In an equilibrium with escalation, reputations satisfy:
Pom 'Ag<p and
Pom® ' Ag=p if player I bids for sure with a high card,

77" ?pp<g and

g, 7%~ % py =g if player II for sure with a high card.

b Equilibria with Escalation

An equilibrium with escalation may not exist. Consider for instance the
auction where it is known at the start that II's card is low. When the
bidders have only one unit left, player II drops out for sure. So by
corollary 2, escalation equilibria do not exist. Theorem 6 states the condi-
tions on the initial uncertainty under which escalation is rational.
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5.1. Existence
THEOREM 6: An equilibrium with escalation exists

either if p<nB/(1—¢) and 0<g<mn® (case 1)

orif p<n®/(1—¢) and  g>nP (case 2).

In case 1, the equilibrium is unique.

To find an equilibrium with escalation, a backward induction argument
can be used since, by corollary 2, all steps are reached. The construction
is laborious and is given in the appendix. It is technically similar in spirit
to Kreps and WiLsoN [1982] or CHATTERIEE and SAMUELSON [1987]. The
basic point to understand is that rational escalation is primarily a battle on
reputations. But on this respect, player II has the disadvantage of being
the last player to spend his last unit. Indeed II bids rationally his last unit
only under two conditions: his card is high and his assessment about I’s
card being high is low enough. But in an escalation equilibrium I expects
him to bid his last unit with probability equal to n. Therefore it must be
that at the last step I’s reputation is not too high and II’s reputation is not
too bad.

However all along the auction the evolutions of the players’ reputation
are constrained. If I’s initial reputation is too good, his final one will be
too high and an equilibrium with escalation cannot exist: This explains
the condition on p. As for II, two cases occur depending on his initial
reputation.

Case 1: II’s initial reputation 1s not good, more precisely 0 < g <nP.

As in example 2, II needs to increase his reputation at the very first bid,
by dropping out with a high enough probability when his card is low. But,
since there are good chances that his card is indeed low, player I expects
him to drop out with a high probability so that he initially bids for
sure. The equilibrium is unique and can be described as follows:

(i) both players always bid when their cards are high;

(i) with a low card, player I bids for sure at step B'; thereafter
he randomizes so that he is expected to bid with a total probability equal
to m;

(iii) with a low card, player II always randomizes: At step B", so that
I’s assessment g _, after observing his bid is exactly equal to n®~?!; there-
after, so that he is expected to bid with a total probability equal to .

At the very beginning of the game, I's reputation does not increase and
I’s reputation makes a jump: py_,=p and gz_,=n""!. Then, as long as
the auction continues, the assessments increase linearly: p,_, =p,/n and
dp-1=qs/m for b=1,...,B—1. Player I gets his payoff at the beginning
of the auction. On the contrary, player II, if his card is high, has to wait
until the end to take advantage of bad I’s reputation.

Case 2: IT’s initial reputation is not bad, more precisely g >n®.

This time, II’s reputation is high enough and player I builds his reputation
at the very first bid by dropping out with some probability when his card
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is low. Thereafter an equilibrium is very similar to case 1. Details are
given in the appendix.

5.2. Stable Equilibria

We know from above that the three kinds of equilibria, with either I
winning or Il winning or with escalation all exist if I’s initial reputation is
not too good; otherwise only both winning equilibria exist. The next
theorem shows that the stable equilibria are the more plausible one; If I
is not in a too good position an escalation process determines the winner;
otherwise I wins.

THEOREM 7: The stable equilibria are:

the equilibria with escalation if (1 —¢) p < 78,

the I-winning equilibria if (1—¢) p > n®.

The proof is given in the appendix. To destabilize for example the
[-winning equilibria when Is initial reputation is not good, we have to find
small perturbations of the strategies which incite players to deviate largely
from them. Perturb the IT’s strategies such that, with a small probability,
IT plays until the end and far more often with a high card rather than with
a low one. Then player I cannot deter II from bidding. Because, if he
can, II's bids come from the perturbed strategy only. Player I should
therefore stop after observing a bid but then II should always bid. So
there is an internal inconsistency in assuming that player Il never bids. This
implies that II bids with some probability. Then one can show that an
equilibrium of the perturbed game is an equilibrium with escalation which
is far from any I-winning equilibrium if I’s initial reputation is small enough.

Remark that the I-winning equilibria are sequential and perfect. To be
sequential, it must be that, if II ever bids, he is “rationally’
punished. Namely, he gets less than 1 dollar in a sequential equilibrium
starting at step (B—1)!, whatever his card is. Since II is not expected to
bid, player I may assess any probability that II has a high card if II
bids. In particular he may believe that II’s card is surely low and it is
rational for him to bid. The concept of stable equilibria precisely prevents
such unplausible beliefs.

5.3. Discussion with Related Work

Our game can be interpreted as a war of attrition, for example as a
model of exit in a duopoly market. Firms compete for a natural monopoly
market. Whenever both are active they loose money. Information bears
on private costs. It is interesting to compare our result with FUDENBERG
and TiROLE'S [1986]. Their model is technically different: Bids are placed
in a continuous way, horizon is infinite, and players’ types take an infinite
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number of values. They prove that there exists a unique Bayesian equili-
brium, which is similar to our escalation equilibrium. Escalation allows
firms to demonstrate their power: The lower the cost of a firm, the longer
it intends to stay in the market. But their uniqueness result is driven by a
different argument than ours. They assume that for some low enough
costs, a firm makes money even as a duopoly. For these costs, bidding at
all steps is a strictly dominant strategy so that in all equilibria, surely each
firm bids with a positive probability, and by the escalation principle no
winning equilibria exist. In contrast, our uniqueness result is driven by
the signalling effect of a bid.

Our model is also technically close to the bargaining model of Chatterjee
and Samuelson where players alternate offers until one of the player accepts
it. Accepting the opponent’s offer corresponds to dropping out in our
auction. But bargaining models are different since reaching an agreement
is always profitable for both parties and more profitable than disagreeing
forever. The main problem is therefore the date of the agreement.
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APPENDIX

Proof of Proposition 3

Suppose for example that player I has card ¢ and is still in the auction
at step 4'. In an equilibrium he chooses o, SO as to maximize his expected
payoff, which is given by (1): vj=0f { (t—p,) S+ p, v _, }. Therefore:

>0 = v =(n—p,)S+p,v5_,
3) and

1, >0=>0;=1

So now suppose that player I bids at step b' knowing that his opponent
surely bids up so that y,=1. The following implications hold

fo,>0=v,‘,=(7r—I)S+v§,_1>0:v2_1>0$a§,‘1=1.

This means that of >0 implies o,_; =1 so that A,_, is equal to 1. But
now, the same argument works for player II since at step b, he expects
player T to overbid for sure. Thus My is equal to 1. Repeating the
argument, all players are expected to bid for sure until exhausting their
resources.  Since player IT optimally bids his last unit only if his card is
high player I expects ¢S—1 at step 1' by bidding. Since we assumed
€S <. he should not bid at all contradicting A=100O

Proof of Corollary 4

Suppose for example that player I has card ¢ and that step b' is
reached. From (3):

= If p,<m, whatever his card is, he bids for sure (since v§_,>0). This
is impossible from proposition 2 except if it is the first step of the auction.

— If p,>m, if he bids, it must be that v,_;>0. As in the proof of
proposition 2, it implies that he surely bids at step (b—1)!, which again
gives a contradiction. [J

Proof of Theorem 6

In an equilibrium with escalation, all steps are reached so that a backward
induction argument can be used. We first prove in lemma 8 that final
assessments p, and g, are constrained. Since the behaviour along the
auction is also constrained, the behaviour at the first bids is fixed so as to
satisfy the final requirements on the assessments.
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LemMA 8: In an equilibrium with escalation,

either p,<m/(1—¢) and q,=m(case 1)

or po=n/(l1—¢g) and  q,>n(case 2).

Proof: We know from corollary 4, that y, is equal to . But, from (2),
II surely drops out at step 1" if his card is low. Thus p,=p%¢,=n. This
implies ¢, >m and B%>0. Using that B} maximizes B} (n—p, (1 —€))S over
[0, 1] we get that po<w/(1—¢). Moreover, if po<m/(1—¢) then Bi=1 so
that p, =¢,=n. 0

Intuitively one would expect in an equilibrium with escalation that players
always bid with a high card. To check that, remark that player I expects
after the first bid

veS with a high card and 0 with a low one

where v is the probability that cards are shown. Similarly player II expects:

¥(m—po (1 —¢))S with a high card and 0 with a low one.

Therefore player I expects all along the auction a strictly positive gain if
his card is high so that he surely bids at all steps. As for player II it is
only true in case 1. It implies at once that an equilibrium with escalation
may exist only if p<n®/(1—¢). Indeed corollary 5 gives: p=hgn® 1 p,
and using that p,<n/(1—¢) implies p<n®/(1—¢). Now the nature of the
equilibrium depends on g.

Case 1: Tt occurs if and only if p<n®/(1—¢) and 0<g<n".

— Necessary conditions: We just saw that in case 1 both players surely
bid at all steps with a high card. Using also g, =, corollary 5 gives:

1

p=hgn® 'p, and  g=pgm!

Now p,<m/(1—¢) implies p<n®/(1—¢). As for g, recall that 0<pp<m
(corollary 4). Since pg=g/n" ! we get 0<g<n®,

— Sufficient conditions: Assume that the necessary conditions hold we
show that an equilibrium exists and that it is moreover unique if
0<g<mnB. It should satisfy: :

(i) both players surely bid at all steps when their cards are high:

4 of=1,b=B,...,1
and
(%) Br=1,b=8B,...,1

(ii) except at first bids, their probability of bidding with a low card are
determined by corollary 4:

(6) M=(—p)oas+p,=mb=1,...,B—1
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and
@) ub=(1_qb)6£+qb=n,b=l>---aB—l

where assessments are given by: p,=p,n®, ¢,=n*, b=1, ..., B~1.

(iii) at first steps we know that II bids so as to build his reputation:
®) re=(1—¢q)Bg+g=g/n°"!
Finally I always bids whatever his card if Mg <7 so that
&) Ap=1 if g<n®

If p<n®/(1—¢) and g<n® strategies (o, B) which satisfy (4) to (9)
exist. One easily verifies that they constitute an equilibrium. If moreover
g<m® they are unique.

Case 2: It occurs if and only if either p=nB/(1 —¢) or p<nP/(1—¢g) and
<y

— Necessary conditions: The argument is similar except that, as we above
saw, player Il expects now a null payoff after the first bid whatever his
card. Thus he is indifferent between bidding and dropping out so that
corollary 5 gives now:

(10) P=hgn® 'po=hyn®/(1—€) and  g>pynP!

By the first equation Ay =p(1—¢)/n® so that p<n®/(1—g). Morcover if
p<mB/(1—¢) then Ag<l. By corollary 4 this requires  that
Hg=m. Therefore by the second inequality of (10) g>p,nP ! =P,

— Sufficient conditions: By a limiting argument it suffices to prove that
an equilibrium exists in the non degenerate case where p<nP/(1—¢) and
n°<q. Equilibria are no more unique since there is some freedom in II’s
behaviour as long as the final assessment q; is higher than n. The condi-
tions on his behaviour (5) and (7) are replaced by

(11) (I1-q)B,+g,Bi=m, g,>n°. b=1,...,B

As for player 1 his strategy should still satisfy (4) and (6) along the
auction and his first bid is now determined by (10). Now, one easily
checks that strategies that satisfy (4), (6), (10), and (11) exist under the
conditions on p and ¢ and constitute an equilibrium. Equilibria can be
described as follows:

(1) player I always bids when his card is high;

(ii) with a low card, player I always randomizes: At step B’ so that II’s
assessment py_, after observing his bid is exactly equal to n®/(1 —¢); there-
after, so that he is expected to bid with a probability equal to n;

(iii) player II is expected to bid at all steps with a probability equal
to n. He may drop out with a high card as long as the assessments still
satisfy ¢, >n’.
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Payoffs are:
for player 1, 0 if his card is low and 7®¢S if his card is high;
for player II, (1—p (1 —&) = ®) S whatever his card is.

Stable Equilibria

Stability is studied by slightly perturbing the strategies of the players and
looking at the equilibria of the perturbed game. More precisely one
chooses a completely mixed strategy for each player, a for player I and P
for player 1I, and perturb the initial game as follows: If player I chooses
a strategy a, it is replaced by a*=38a+(1—8)a, meaning that « is played
only with probability (1-8) and « is played with probability 5. And
similarly a player II’s strategy P is perturbed into B*.  We call the strategies
choosen by the players the “real” strategies.

Real strategies (o, B) form an equilibrium of this perturbed game if « is
a best response to B* and B is a best response to a*. The I-winning
equilibria are unstable if, for some strategies, a, ﬁ all equilibria of the
perturbed game are far from them whenever & is small enough. And
similarly for the other types of equilibria.

We choose a completely mixed strategy & which generates posterior beliefs
and bidding probabilities such that for any b<B:

(12) pp>n"  and  A,>n

when the initial assessment is p;. Such a strategy exists because (12) is
not required at step B so that player I can build his reputation at that
step.  For example one can choose a,=7y and a!=1—7 for Y positive and
small enough. Roughly speaking & is close to a revealing strategy because
I bids far more often with a high card than with a low one. Moreover it
is a “tough” strategy since with a high card I bids with a high probability
until the end. Therefore if IT knows that & is played and if he observes a
bid he should stop. Consider a similar strategy P for player II. We denote
by p* and g* the beliefs generated by the perturbed strategies.

The proof of theorem 7 can be sketched as follows. We first show that
players start to bid (lemma 9). Then, since each player chooses to bid
once with a positive probability, we expect an escalation process to
start. The proof is a little more complicated than for the original
game. Crucial variables are the probabilities assessed by the players that
their opponent’s strategy is real. Indeed whenever this assessment is too
small the player should stop. But we prove that, for & small enough, this
assessment remains high for at least one of the player as long as the real
players continue to bid with some probability. It implies that any equili-
brium of the perturbed game is “nearly” an escalation equilibrium, meaning
that both players bid with positive probability at all steps except possibly
at the very last one (lemma 11). Finally we prove that if II stops at the
last step the equilibrium is close to a I-winning equilibrium. If IT does not
stop, the equilibrium is an escalation one. Each case appears depending
on p being greater or smaller than n8/(1—¢).

RATIONAL ESCALATION 245



Formally, let s' be the *“‘stopping step”, that is the first step, if any, where
the auction surely stops if the real strategies are played (i.e. for example if
i=1 player I. surely stops when his remaining budget is s:A,=0, but no
player surely stops before: A, >0 and p,>0 for any b>5s).

LemMA 9: In an equilibrium of the perturbed game, no player surely
drops out: Az>0 and pg>0.

Proof : Suppose, by contradiction, Az=0. After observing I's first bid,
player II knows that strategy a will be played if the auction continues and
his assessment about I’s card is equal to pg_,. He optimally stops so that
g =0. But player I expects II to overbid with probability pf, which is
equal to (1 —8)ug+ 3. Since pg=0, this probability is smaller than & so
that I should bid: this contradicts Az=0. An analogous argument shows
that ug=0 is also impossible. [J

LemMMA 10: In an equilibrium of the perturbed game, as long as a player
bids, he expects a null immediate gain, except maybe player I at first
step. So that:

a3 pE<n and g=1 if pf<m

{)»,’,“=1r and p¥=n for hb=B—1,...5,

14
(14 M = if i=1II

Proof: 1t suffices to adapt proposition 3 and corollary 4 to the perturbed
game. [

We denote by P, (resp. Q,) the probability assessed by II(resp. I) that
the real strategy o (resp. B) is being played when step b'(resp. b") of the
auction is reached. Of course Py=Qp=1-20.

LemMMa 11: In an equilibrium of the perturbed game, assessments about
the opponent’s real strategy satisfy:

(1-P)<§/(n®~*7'A§)  and  (1-Q)<d/(n" "' )

until the stopping step.

Proof: The assessment qbout the strategy a being played evolves accor-
ding to 1-P,=(1—P,, )Xy, /A4, so that (1=P)<(1 =Py )/AY, ;.

From (14), a repeating argument yields: (1 —P,)<3/(r®B~*"1)\%) until
step 5. And similarly for Q,. O

LeMMA 12: Consider an equilibrium of the perturbed game for o small
enough. Either the stopping step does not exist or it is the last step of
the game, i.e. s'= 1"

Proof : Suppose that the stopping step exists. From (13) at least one of
the player is expected to bid with a probability higher than = at first step:
Azmn or pf>n. Suppose w.lo.g it is player I. Then his opponent
assesses a high probability that he is playing his real strategy until the
stopping step. Indeed if 8 is small enough surely from lemma 11.

(15) P,>n forall b=s if i=1 andforall b=zs—1 if i=II
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We claim that I is not the first to stop (i. e. he is not player i). Suppose
by contradiction he is. At step s' one has A*=(1—P)X,+P,A,. Using
(15) and A;=0 gives A*¥ <x, which contradicts lemma 10.

So it must be player IT who stops. Suppose by contradiction that s" is
not the end of the auction (i.e.s>1). Player I knows after observing a
bid from player II at step s" that he now faces the strategy p and he
optimally stops. So that A,_, =0. But by (15) this implies A¥ | <m and
again we get a contradiction: player II should not have stopped at step s"
since he could get an immediate strictly positive gain. This proves that
the stopping step, if any, is the last step of the game. O

Prbof of Theorem 7

Consider an equilibrium of the perturbed game for & small
enough. From lemma 12 two cases may occur: either player II stops for
sure at the last step or does not.

o Case a: player II stops for sure at the last step. Then surely p>rB/(1 —¢)
and the equilibrium is close to a I-winning equilibrium.

We first show that player IT gives up often at his first step. By definition:
HT=(1_Q1)AH1+Q1H1- But pf=n and p=0 so that
n=(1-Qy)n,. Therefore by lemma 11:

T<(1-Q)<3/(n® 2 )

Hence pf tends to zero with 8. This implies that I always bids at first
step: Ag=1 and that IT gives up with a high probability at his first step
since py also tends to zero with 8. The equilibrium is indeed close to a
[-winning equilibrium.

By the usual argument we have: p=p;>A¥n® 1 p¥>(1-8)n® "' pt. But
it must be that p*¥>mn/(1—¢) otherwise II would not stop at last
step. Therefore p=>(1—38) n®/(1—¢).

e Case b: player II never stops for sure.

In that case both players are expected to play until the end. By adapting
the argument used in the non perturbed game, it must be that:

either p <m/(1—¢) and q¥=mn(case b—1)
orpg=mn/(1—¢) and q¥ =n(case h—2).
By an argument very close to the proof of theorem 6 we show that this

case occurs only if p<n®/(1—¢) and that the nature of the equilibrium
depends on the position g with respect to w®.

" Case b occurs only if p<n®/(1—¢) whenever 7 is small enough.

In an equilibrium player I always bids with a high card if he uses his

real strategy and with probability greater than 1—1v if he uses &. Hence
ay*> 1 —v which implies p (1 —y)® <Af B~ px <nB/(1 —¢).

RATIONAL ESCALATION 247



o Case b—1: In that case p§ (1 —¢)<m so that II expects a strictly positive
payoff if cards are shown and his card is high. Since, as usual, he expects
a nonnegative immediate gain all along the auction he surely bids when his
card is high. In particular Bf=1. This proves that the equilibrium is
bounded away from the I-winning equilibria. Moreover the assessments
satisfy: ¢(1—v)®<nB—1p¥g¥*<q. But p¥<n always holds and in case 1
gf=mn. This implies

g(1—y)P<n® andif g<n® then pi<nm.

So if g<n® player I bids at the beginning: A;=1. This proves that the
equilibrium is bounded away from the II-winning equilibria.
e Caseb—2: In that case player I should reach the assessment
p§=n/(1—¢). So surely p>0. Suppose moreover that p<n®/(1 —¢) holds
strictly.  Since

p(I—7)P<Mn® 1 p¥<p
it implies
pA=7PA—e)/n®<AE<p(l-¢)/n".

Thus, by the assumption on p, A} is bounded away from 1 and 0 and v
small enough. But A} and Ay differ from at most 8 so A is also bounded
away from 1 and 0 for 8 and y small enough. Therefore the equilibrium
is bounded away from the I and II-winning equilibria.

Moreover it must be that pf=n (by (13)). As usual, g=nB—1pg* so
that ¢g¥ > and p¥=n imply g>n®.

We can now end of the proof. If p>n®/(1—¢) only case a can occur so
that the I-winning equilibria are the only stable equilibria. If p<n®/(1—¢)
and g<n® only case b—1 can occur. If p<n®/(1—¢) and ¢>n® only case
b—2 can occur for y small enough. In both cases we proved that the
equilibrium is bounded away from the I and II-winning equilibria: the
escalation equilibria are the only stable equilibria. O
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